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1 Introductien

The purpose of this paper is to report on a novel approach 1o the modelling of the turbulent scalar
fuxes 1w, Ay which arise as a cousequence of time averaging the transport equation for a mean scalar
(). The focus of this paper will be on the case where © s a ‘passive’ scalar: the extension of rhis

approach to cases involving buoyvaney and compressibility will be briefly discusscd.

The need for a new approach to modelling the scalar fluxes stems from the Jack of realisin in the
performiance of the simple gradient-transport models and the inadequacy of wany of the assump-
tions underlviug the more complicated scalar-Hux transport closures. The problems with the simple
gradient-transport closures are well known. In miodels of this tvpe. the scalar Huxes are related to

the mean scalar ficld via a scalar turbulent diffusivity 1T, thus:

P s
—U,H = I‘]f‘_ \1 J
Jdr,
where, for exarple:
C, k-
rt I L g
Ty €

k aund ¢ are. respectively. the turbulent kinetic energy and dissipation rate while o, is the appropriate
Prandt] Schridt number. Models of this tvpe fail bhadly in complex and strongly-buovant fows ax
Eq. (1 ix clearly too simplistic in its representation of the scalar fluxes (note, for example. the
absence of an explicit dependence on the Revnolds stresses or on the mean shearl. Equation (1) also
implies that the turbulent diffusivity is isotropic and that the turbulent scalur Huxes and the mean
scalar gradients are aligned. Neither result holds true in complex two- and three-dimensional shear
Hows, Batchelor (19495 proposed a generalization to the gradient-transport hypothesis involving
the definition of a turbulent eddy-diffusivity tensor (Dy). thus:

J0

— {3)
Y ().l'k ‘

—uf =
Several attempts have been made at obtaining a practical representation for D,;. Some of these thy
Yoshizawa (1985.19xn). Rogers ¢t al. (1989) and Rubinztein and Barton (19011 will be discussed
later in the paper. At this point, however. it is convenient to mention two such proposals. Daly
and Harlow (1970) made D,, directly proportional to the Revnolds stresses. thus:
_— S
—u,f = constant x W, — (4
(jIk
This model has found widespread due to its relative simplicity and ability to account for the
anisotropyv of turbulent diffusivity. Launder (1983, 1995) has proposed the "WET™ model for the
scalar fluxes obtains these quantities as:
k. 00 al’
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—~u,f =
Tk
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Launder's model is unique amongst the existing algebraic closures in (1) being implicit in the scalar

fluxes and (ii) not being of the gradient-transport type in that it clearly allows for finite scalar




Huxes in the absence of mean scalar gradients. This is indeed possible in practice but only due
to the action of transport by the mean-flow and turbulence: a qon-local effeet which cannot be
catered for within the context of algebraic closures. Few examples of the use of the "WET™ model in

complex shear Hows exist and hence little further can he said abont the validity of such formulation.

The alternative route to the gradient-transport hypothesis involves calculating the scalar fluxes.
directly. either from the solution of modelled differential transport equations in which thev are the
dependent variables or from simplified algebraic relations derived from these differential equations.
The exact equations are of the fornu
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where .1 i the volumetric expansion coefhicient . = i« molecular diffusivity. p s the fuid density,

and p is the fluctuating pressure.

The first three terms on the right-hand-side of Eq. (6) represent. respectively. the rates at which
2,8 is generated by the turbulent interaction with the mean ficld and by the body forces (buovancy
in this case). These terms are the only ones in Eq. (6) that can be treated exactly: the remainder
must first be approximated before the system of equations can be solved for the scalar fluxes.
The viscous destruction term (which is zero only 1n isotropic turbulence) is usually neglected in
non-isotropic turbulence as well by invoking the assumption of local isutropy at high turbulence
Revnolds numbers. This assumption does not rationally account for the energy cascade to high
wave numbers. a process which suggests that some dissipation needs to be present (the DNS results
of Rogers et al. (1989} obtained in a fully-developed turbulent channel flow even suggest that
this term acts as a production term in certain circumstances!). The tarbulent-transport term is
either neglected (asin conventional Algebraic Stress Aodel closures) or is modelled via a gradient-
transport relation. The last term in Eg. (6). the fluctuating pr('ssur(ubcalar-gradi(-m correlations.
may be viewed as the counterpart of the pressure-strain term in the T, transport equat ion. It is
clearly an important agency which requires carefui modelling and it ix perhaps here that current
scalar-flux-transport models are least well developed. An exact expression for this quantity (derived

from the instantaneous equations for the scalar and the i-component of momentumn:) is given as
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where the primed quantities are evaluated at distance x + T.

There are three distinet groupings of terms in Eq. (7): one which is associated with purelv tur-

bulence interactions {(the slow™ part. Ty ). another which involves interactions hetween the mean




velocity gradients and Huctuating quantities (the ‘rapid” part. m,;5) and a third which involves the
body forees ( 7p,3). Note that the gradients of the mean scalar do not appear explicitly in Eq. (7).
The couventional approach to modelling the integral expression in Eq. (7) has been to model
eacli of its components separately. Thus. Monin (1965). by analogy with Rotta’s return-to-isotropy
proposal. suggests the model:

€
Ti31 = -—Cw—k:u,G ( )

[ 2

Launder (1975) models the 'rapid’ part as:
T2 = —CoyPyg; (9)

— _ T goU
where P,g‘l = "'ngm.

This. by simple extension to buovant flows. gives:

T3 = —C46Ghg (101

where G,H = —3g,92.

This piece-wise approach to modelling the integral expression (inspired by the once fashionable
practice of modelling the equivalent terms in the T, equatious. since abandoned: e.g. Speziale
et al. 1991} results in the absence from the model of any explicit dependence on terms containing
o, and :—:\i: This is a serious omission as the role of the fluctuating pressure-scalar-gradient
correlations is to connter-balance the rate of production of 4,8. including that due to the interaction
of the Revnolds stresses with the scalar gradients. Interestingly enough. in a DNS study of passive
scalar dyvnamics for fullv-developed turbulent channel flow. Rogers et al. (1989) remark that “the
results indicate that splitting the pressure term into rapid and slow parts is not a good idea™. Jones
and Musonge (1957) appear to have been among the first to attempt to restore such dependence.
Theyv argued that 7,1 and 7,5 should be modelled together since both ultimately depend on the

mean feld. Their proposal reads:

u,0 FolS) ou .
Tyl + Ty2 = -wa'FCzeaug;-*'dukd—If (In
J
where
_ ﬁ
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2
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The model is of some complexitv and involves six coefficients. A similar result was arrived at by
Dakos and Gibson (1987) from the use of Fourier transforms to derive non-linear expressions by




formal solution (in wave-number space) of the Navier-Stokes and the scalar equations. In contrast
to these more rigorous approachs. Craft and Launder (1959} (see also Launder. 1945) proposed
that =, | should be modelled as:

— . : " ue
wH(l +0.642) + Cpay + Cpaar, ) — CJ,,h’ka,)U— (12)
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where (g and Cy are functions of As and the stress invariant. No explanation was offered. nor is
one obvious. for the inclusiou of the mean-scalar gradient in a purely turbulence-turbulence inter-

actions term.

It will have become clear trom the above that the basis for the modelling of the fluctuating pressure-
scalar-gradient term are somewhat precarious. Application to wall-bounded flows introduces further
uncertainties in the form of additional terms to account for the effects of a wall in damping the
fluctuating pressure field in its vicinity (Gibson and Launder. 1978). These terms involve “wall
damping” functions that liniit the model's applicability to sitnple geometries where such funetions
can be specified withour ambiguity. All in all. therefore. it is reasonable to conclude that while
gradient-trausport models are inadeguate. scalar-flux transt =t models are defective in their fornn-
lation and do not necessarily justify the increased computing overhead required. The motivation
is thus clear for the abandonment of both closure strategios in favour of more rationallv-derived

relations of an algebraic nature.

2 Model Formulation

The proposal we wish to advance through this paper is that an explicit algebraic relation for w8
may be constructed. not from the reduction of the transport equation for this quantity (as this will
then involve the ill-modelled pressure-fluctuating temperature gradients term). but rather from the
utilization of representation theorems based on a rationally assumed functionsl relationship which
ix then reduced through the application of appropriate corstrainuts. For an incompressible flow with
a passive scalar. the following functional relationship mav be assumed:

—u,b = (T, 5, . W,,.0,.p.¢ . 62.0) (13)

In the presence of body forces. the relatiorship would become:

w8 = f(5T;. S, 1W,.09,.0.6.62.0.q,) (14)

In compressible and reacting flows. the following relationship may be appropriate:
-_ . . —_— ar 3() -
—u,f8 = f(uluj.‘S,]‘ H ,J.Ovj.p.fg. Q. 93‘91. ()TJ 5};.‘\/,) (15)

M, is the turbulent Mach number.

In the above. S,; and 7, are, respectively. the mean rate of strain and mean vorticity tensors:

19U, oU
Sy =l + -2

2 9r, " Or, (o)




1 at, o,

= (e (17)
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We can introduce eg which is the rate of dissipation of the scalar variance 2. This quantity is

related to the dissipation rate of turbulence kinetic energy via the relation:

0 _ p-1 0567 (s
0.57,q,

2nd R is the tinme-scale ratio which is taken as a known constant.

We confine our attention to ithe incompressible case for which the general representation to the

functional relationship of Eq. 13 is:

—wf = a0, T a0 + 0380 ) + gt 0 + a5 Sk S, 0
+ a0, + asll g0, + ax(Sully, + S,i11i,10),
+ oyl TSk, + TSk 0, F agalm Wi, + e,
+oang T,y FaSog T T g F 0SS
+ ahHg + o Wulig, + a9 W, + Sy,
+ (T Sk T TSk gy + axttibe, + Ty, (19)

where
a, = n,(k.f‘as.p. Iy =1...20

and I, consists of all possible invariants of the tensor variables listed in Eq. {13).

We mayv simplityv the above by assuming:

1. the anisotropies and turbulent time scales are sufficiently small to allow for a multilinear

expansion {(the terms containing ay. as. o aud ay are neglected):
\ = =)

2. there is equal balance between the effects of rotational and irrotational strain rates so that

they enter through a production-type mechanism only. Thus we have:

Qg = Q3
and
10 = —Qg
The following compact form is then obtained:
—m =019, + QQT,Je‘J + OgU,Je,J + Qg(‘r,k(,']_k + r,kl',,k)@,, (20)

The lengthscale of turbulence is taken to be of the form:

3

i3
1= (21)
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Two different timescales are available i Hows with scalar irausport: the scalar timescale ()
and the dvnamic turbulence timescale {7¢). The ratio of the tormer to the latter is. of course.
the quantity R obtained in Eq. (1), It is legitimate to use cither of the two timescales for the
purpose of scaling the general representation but. to be consistent with the choice of the turbulence
lengthscale, we adopt the dynamic thuescale which is given by

Tli =

k (22)
€
With the above, the algebraic expression for u,6 in non-buoyant flows takes the hnal form to the

lowest order:

— k2 00
—u ) = C]TBTX
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X,
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where the C's are dimensionless constants to be determined by reference to DNS and experimetal

data.

The first line in the simpliied relation corresponds exactly to the simple gradient-transport mode)
givenin Eq. (1) when (] is set equal to %f The second line is immediately recognizable as the Daly
and Harlow model in Eq. (4). Lines 3 and 4 bring in dependencies that are not present in anv of the
algebraic models reported to date. Their presence here is supported by the outstanding analvsis of
Dakos and Gibson (1987) who obtained an expression for the fluctuaring pressure-scalar-gradient

term that contained similar products of mean velocity and scalar gradients.

It is interesting to consider at the very start some of the limiting forms of the new proposal. When
a scalar gradijent %%) is imposed on an isotropic turbulence field only the scalar-flux component v

Is nen-zero and the present relation predicts this quantity as:

— & 2 e
6= —(C )= 2
rf = Py 1+ 3 ) (')y (24)

In non-isotropic turbulence, the imposition of a scalar gradient in a given direction is known to
generate scalar fluxes in the directions at right angle to it. Thus. in a two-dimensional How in
the x-direction with mean-velocity U. the imposition of ‘-3% would generate a scalar flux in the
streamwise direction (uf). T ¢ correct prediction of this flux component is very important in a
number of situations. especially in buovant-flow conditions (e.g. in buoyvant plumes where the
streamwise flux is the dominant production agency for the turbulence kinetic energy and in the

classic cavity flow with one heated ard one cooled vertical surfaces). Equation (1) predicts this

-1



Quantity as zero but the present proposal gives:

— k__00©
—uf = Cp—ut—. {25)
e dy
In a flow with finite %? the imposition of a velocity gradient in the same direction may increase or

decrease the streamwise scalar flux depending on whether the sign of the velocity gradient is the
same or opposite that of the scalar gradient. For this case. the present proposal gives:
— k__ 00

-uf = Cr-ur—
€ Y

k3ol 08

3

€2 dy dy
k2 — gl 90
+ Cy—své——

F U=
€ Jdy Jy
We consider below the reletion between the model proposed herein ami a mimber of existing
alternatives. Yoshizawa (1955 used the two-scale direct interaction approximation to obtain a
diffnsion rensor * Dy, 1 which is linear in the velocity gradients. His result, whicli is valid for arbitrary

Revnolds numbers, is given by:
k2 K3 foU, ol
D| = C]—é, - C‘-) 1
J € J

A Bt ) o=
T el UI)+01‘, (27)

In a shear flow with finite %’;—L this formulation does not permit for the diffusivity components
Dy, and Dyy to be unequal. This latter defect was absent from the formulation of Rubinstein and

Barton {19911, obtained by application of renormalization group theory. At high Revaolds number.

their model gives:

k2 k3 oU k3ol
= O = -y 2 o 2 2%
by=6 e Y C: € Jr, Y€ or, 125)
Yoshizawa 11985 made a further proposal. given by:
==\ 2 ==\ 3 3

02\ 8’ o, 8L, a, ot

y =4C [ — ] ef, -8 — =+ =2 = - 29)
DJ Cy (fo €0y & > e (Y 0.1‘1 + 0[,} + () (').rj o, (

None of these madels contain an explicit dependence on 7w,. something which is clearly present
in the exact equation for u,#. This dependence was restored in the model of Rogers et al. (193Y)
who replaced the terms representing the time-change of the scalar fluxes. their dissipation and the
fluctuating pressure-scalar-gradient correlations b.\:a multiple of the scalar-fliux vector. Their model
is given by:

u,f = —O;,,’u,,ujb— (30)

J

where O~ is the reciprocal of the determinant of the tensor 0., which is defined as:

Cp al’,
= ! 1
O,J == 5,1 + ET] (31)



where 7 is the timescale.

The authors point out that the matrix O, becomes stiff for values of S7/Cp >> 1 but the modol
sufters a more serious problem; namely. for Hows subjected to normal mean strains - such as plane
strain or the axisymmetric expansion/contraction - Eq. (30) is not necessarily invertible rendering
Eq. (29) singular (see Appendix).

The relationship between the present model and the alternatives can best be seen from Tables 1-4
wliere various components of the diffusivity tensor (D,,) ubtained with those models are presented.
The results are for the case where % is the only non-zero velocity gradient.

3 Appendix

We consider the performance of the Rogers et al. (1989} model with respect 1o the case of mean

flow plane strain ie. where:

Uyy=~lha=S

and all other components of U, are zero. For this case:

‘245 0 0]
0= 0 2 -5 ¢ (A1)
0 U
and. obvionsly.
|t 00
Q=1 0 Fx 0 (42)
0 0 ?ZJ
So. for arbitrary turbulence
— T 00 00 90
= (VT S —— 4+ T —— Al
“e =TSy (“‘“‘ax, MR "af_) (43)
_— T 00 00 0o
o= (———  — 22U — 2Uy —— QUy— 4
us (CD—ST)<u’uldr; +u,u-aI2 +U2U3613) (A4)
— T 00 foS] J0 .
uzf = (z‘;) (ltgllxa—l_l + UJUQE + 113113@) (.45)

Clearly. if Cp = S, the scalar -flux u28 hecomes infinite. In the vicinity of Cp = S, the result will
be unphysical. For anyv general irrotational mean fow strain. this model would suffer from similar

defects.



Table 1.

Model

Present

Yoshizauwa (1985)

Yoshizawa (1988)

Royers et al. (1959)
Rubinsteim and Barton (1991)

Table

o

Model

Present

Yoshizawa (1925

Yoshizawa (19581}

Rogers et al. (1959)
Rubinstein and Barton (1991)

Table 3.

Model

Present

Yoshizawa {19585)

Yoshizawa (1988}

Rogers et al. (1959)
Rubinstein and Barton (1991)

Table 4.

Model
Present

Yoshizawa (1985)

Yoshizawa (1988)

Rogers et al. (1989)
Rubinstein and Barton (1991)

Models results for diffusivitv-tensor compaonent Dy

k? [ ) . ki—al
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o R WL
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Models results for diffusivity-tensor component Doy
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Models resuits for diffusivitv-tensor component Dy

k— Kar k2280
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Models results for diffusivity-tensor component Doy
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